Effects of Loading Rate and Pore Pressure on Compressive Strength of Rocks.

S. Khamrat¹*, K. Fuenkajorn²
¹Graduate Student, Geomechanics Research Unit, Suranaree University of Technology, Thailand
²Associate Professor, Geomechanics Research Unit, Suranaree University of Technology, Thailand
*e-mail: B5100477@hotmail.com

ABSTRACT
The objective of this study is to determine the effects of pore pressures on the compressive strengths of Tak granite, Lopburi marl and Lopburi marble. Failure strengths are determined for various stress rates and confining pressures under dry and saturated conditions. A multi-axial strength criterion is developed to describe the distortional strain energy density of rock at failure as a function of the mean strain energy. The energy required to fail the rocks under dry condition is higher than that under saturated condition. The proposed strength criterion can be useful to predict the strength and deformation of rock embankments and foundations under dry and saturated conditions.

KEYWORDS: Pore pressure / Strength / Loading rate / Strain energy

1. INTRODUCTION
The compressive strength and deformability of rocks are important parameters for the design and stability analysis of geologic structures. The effects of stress rate on the compressive strength elastic modulus of rocks have long been recognized. It has been found that rock compressive strength and deformation modulus decrease with the loading rate [1-4]. Pore pressure has also been known as one of the factors lowering the rock strengths [5-8]. The rock compressive strengths decrease significantly as the water content increases. The measurement of pore pressure and its effect on the strength and deformability of low porosity rocks is however very difficult. The influence of water on deformability of rocks is also reflected as a reduction of Young's modulus and increase of Poisson's ratio, which indicates that the saturated rocks will deform more than the dry ones under the same stress condition [9-12].

The objective of this study is to experimentally determine the effects of pore pressures on the compressive strengths of granite, marl and marble. The specimens have been prepared to obtain rectangular blocks with nominal dimensions of 50×50×100 mm³ for the uniaxial and triaxial compression tests. A minimum of 40 specimens are prepared for each rock types. The specimens are cut and ground to obtain the perpendicularity and parallelism to comply with the ASTM standard practice [13]. They are prepared to test under dry and fully saturated conditions. Under dry condition the specimen are over dried for 24 hours before testing. Under saturated condition the specimens are submerged under water in pressure vacuum chamber for 24 hours in order to saturate the specimens (Fig. 1.) The granite, marl and marble have average water contents (w) of 0.14%, 2.71% and 0.09%, respectively (Fig. 2).

3. TEST METHOD
The laboratory testing includes uniaxial and triaxial compression tests. Loading rates vary from 0.001, 0.01, 0.1, 1 to 10 MPa/s. The specimens are subjected to uniform pressures from 0, 3, 7 to 12 MPa (Fig. 3). The sample preparation, test methods and calculation follow relevant ASTM standard practices. Neoprene sheets are used to minimize the friction at all interfaces between the loading plate and the rock surface.

The tests are performed by increasing the axial stress to the rock specimen. The axial and lateral strains are measured as a function of time until failure occurs. The polyaxial load frame is used in this study because the cantilever beams with pre-calibrated...
Fig. 1 Sandstone specimens submersed under water in vacuum chamber.

dead weight can apply a truly constant lateral stress to the specimen. The dial gages will be installed to measure the axial and lateral strains. During the test, the axial strain, lateral strain, and time are monitored. The maximum load at the failure and failure modes are recorded.

4. TEST RESULTS

Tab. 1 summarizes the strength results. Fig. 4 shows some post-test marble specimens from the triaxial compression test under confining pressures \((\sigma_x) \) from 0, 3, 7 to 12 MPa with loading rates \((\partial\sigma_x/\partial t) \) of 1 and 0.001 MPa/s for both dry and saturated conditions. Post-test observations indicate that under high loading rates, the specimens fail by the extension failure mode. Under the low loading rates shear failure mode is observed.

4.1 Strength properties

The strengths of the saturated specimens are lower than those of the dry specimens, particularly under high confining pressures and high loading rates. Fig. 5 shows the maximum principal stress \((\sigma_{max}) \) as a function of the applied loading rates. Based on the Coulomb strength criterion the cohesion and internal friction angle of the rocks have been calculated. The cohesions of the dry and saturated specimens are comparable (Fig. 6). The dry specimens yield slightly higher friction angles than the saturated specimens (Fig. 7). According to the Coulomb criterion the shear stress \((\tau) \) can be represented by:

\[
\tau = c + \sigma_n \tan \phi
\]
(1)

where \(\sigma_n \) is the normal stress, \(c \) is the cohesion and \(\phi \) is the friction angle. They can be determined as a function of the stress rate as follows (Figs. 6 and 7):

\[
c = \chi \ln(\partial \sigma_x / \partial t) + \psi
\]
(2)

The parameters \(\chi, \psi, \sigma_n, \phi \) are empirical parameters.

Substituting equations (2) and (3) into (1) the shear strength of rocks can be presented as a function of stress rate:

\[
\tau = \chi \ln(\partial \sigma_x / \partial t) + \psi + \sigma_n \tan (\omega \ln(\partial \sigma_x / \partial t) + \psi)
\]
(4)

Geology, Geophysics and Geotechnique 8
Tab. 1 Compressive strengths of specimens under various loading rates.

<table>
<thead>
<tr>
<th>σ₃</th>
<th>σ₁/DTV</th>
<th>Granite</th>
<th>Marl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dry</td>
<td>Saturated</td>
</tr>
<tr>
<td></td>
<td>σ₁/DTV</td>
<td>MPa</td>
<td>MPa/s</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0.01</td>
<td>0.27</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>76.7</td>
<td>13.64</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>7.04</td>
<td>143.8</td>
</tr>
<tr>
<td>0.01</td>
<td>100</td>
<td>89.6</td>
<td>5.83</td>
</tr>
<tr>
<td>0.001</td>
<td>1000</td>
<td>98.6</td>
<td>5.83</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>203.0</td>
<td>174.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>183.2</td>
<td>12.64</td>
</tr>
<tr>
<td>0.1</td>
<td>159.2</td>
<td>10.08</td>
<td>0.28</td>
</tr>
<tr>
<td>0.01</td>
<td>158.5</td>
<td>8.16</td>
<td>0.29</td>
</tr>
<tr>
<td>0.001</td>
<td>147.2</td>
<td>7.06</td>
<td>0.29</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>266.7</td>
<td>12.45</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>243.0</td>
<td>9.83</td>
</tr>
<tr>
<td>0.1</td>
<td>225.3</td>
<td>8.75</td>
<td>0.29</td>
</tr>
<tr>
<td>0.01</td>
<td>214.2</td>
<td>7.31</td>
<td>0.30</td>
</tr>
</tbody>
</table>

![Fig. 3 Polyaxial load frame used in this study.](image)

4.2 Elastic parameters.

The elastic modulus (E) and Poisson’s ratio (v) are determined from the tangent of the stress-strain curves at 50% failure. The elastic modulus of the rock appears to increase with loading rate (Fig. 8). The influence of pore pressure on the rock deformability is reflected as the reduction of Young’s modulus. The Poisson’s ratios of saturated specimens are slightly higher than those of the dry specimens, and tend to be independent of the loading rate (Fig. 9).

![Fig. 4 Some post-test marble specimens from the triaxial compression test.](image)
Fig. 5 Maximum principal stress as a function of applied loading rate for dry and saturated specimens.

Under lower loading rate of 0.001 MPa/s the elastic and Poisson’s ratio under dry and saturated condition are similar. This suggests that the pore pressure has no effect on the rock strengths if there is sufficient time to allow water to flow out of the specimens. The elastic parameters can be best represented by:

$$E = \kappa (\partial \sigma_1/\partial \tilde{\sigma}_2)$$ \hfill (5)

$$\nu = \alpha \ln (\partial \sigma_1/\partial \tilde{\sigma}_2) + \beta$$ \hfill (6)

The parameters $\kappa, \xi, \alpha, \beta$ are empirical parameters.

4.3 Strain energy density criterion.

The strain energy density principle is applied here to describe the rock strength and deformation under different loading rates. The distortional strain energy (W_ϕ) at failure can be calculated from the shear modulus.
Fig. 7 Friction angle as a function of applied loading rate for dry and saturated specimens.

Fig. 8 Elastic modulus as a function of applied loading rate for dry and saturated specimens.

and octahedral shear stresses for each rock specimen as follows [15].

\[W_g = \frac{3}{4} \left(\frac{r^2}{\sigma_{oct,f}} \right) \]

(7)

The mean strain energy \(W_m \) at failure can also be derived as a function of the bulk modulus and mean stress at failure.

\[W_m = \left(\frac{\sigma^2}{2K} \right) \]

(8)

The elastic parameters \(G \) and \(K \) can be determined for each specimen using the following relations:
The octahedral shear strength can be determined as [15]:

\[W_{d} = \lambda W_{m} + \nu \]

(12)

The parameters \(\lambda \) and \(\nu \) are empirical parameters. The strain energy criterion gives an advantage that both stress and strain at failure are incorporated to define the point at which the rock can absorb the maximum energy before failure occurs.

5. DISCUSSIONS AND CONCLUSIONS

The effect of loading rate on the compressive strength and deformability are determined for rectangular block specimens obtained from the granite, marl and marble. The polyaxial load frame applies constant lateral confining pressures of 0, 3, 7 and 12 MPa while the axial stresses increased at the constant rates of 0.001, 0.01, 0.1, 1.0 and 10 MPa/s until failure occurs.

The results indicate that the granite, marl and marble have average water contents of 0.14%, 2.71% and 0.09%, respectively. The strengths of the saturated specimens are lower than those of the dry specimens, particularly under high confining pressures and high loading rates. This is because under low loading rates the rock specimens are subject to the consolidated drained condition as the pore water has sufficient time to seep out from the specimens. Under high loading rates however the specimens are subject to the consolidated undrained condition where the trapped pore water builds up the pore pressure and reduces the total failure stresses of the rocks. The elastic modulus of dry specimens is higher than that of the saturated specimens. A power equation can be used to describe the increase of the elastic modulus with the loading rate. The Poisson’s ratios of saturated specimens are slightly higher than the dry specimens and tend to be independent of the loading rate. Based on the Coulomb criterion, the cohesions of the dry and saturated specimens are comparable. The dry specimens yield slightly higher friction angles than the saturated specimens. A multi-axial strength criterion is developed to describe the distortional strain energy density of rock at failure as a function of the mean strain energy. The energy required to fail the low porosity rocks under dry condition is slightly higher than that under saturated condition. The distortional and mean strain energy is calculated from the principal stresses at failure and the rate-dependent elastic modulus. This means that if the total stresses and the loading rate are known, the proposed strength criterion can be used to predict the strength and deformation of in-situ rocks under dry and saturated conditions.
ACKNOWLEDGMENTS

This study is funded by Suranaree University of Technology and by the Higher Education Promotion and National Research University of Thailand. Permission to publish this paper is gratefully acknowledged.

REFERENCES

Fig. 11 Distortional strain energy density (W_d) at failure as a function of mean strain energy (W_m) for dry specimens.

Fig. 12 Distortional strain energy density (W_d) at failure as a function of mean strain energy (W_m) for saturated specimens.

